๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
๋ฐ˜์‘ํ˜•

AI ๊ณต๋ถ€ ํ•ญ์ƒํ•˜์ž/๊ด€๋ จ ์ด๋ก 
5

[Math] Deep-Learning ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ ๋”๋ณด๊ธฐ๊ธฐ์กด ๋ถ€์บ  ๋•Œ ๋…ธ์…˜์— ๊ฐœ์ธ์ ์œผ๋กœ ์ •๋ฆฌํ•œ ๊ฒƒ์„ ๊ณต๋ถ€ํ•  ๊ฒธ ์ž‘์„ฑํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค.๊ฐœ์ธ์ ์œผ๋กœ ํ•ด์„ํ•ด์„œ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค. (ํ‹€๋ฆด ์ˆ˜ ์žˆ์Œ. ์ •์ •์š”์ฒญ ์š”๋งใ…‹)** ๊ฐ•์˜์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค **** ์ƒ์—…์  ์ด์šฉ์„ ๊ธˆ์ง€ํ•ฉ๋‹ˆ๋‹ค **Today's Keyword์‹ ๊ฒฝ๋ง, softmax, activation function, Backpropagation, chain Rule๋น„์„ ํ˜•๋ชจ๋ธ - ์‹ ๊ฒฝ๋ง neural network์ „์ฒด ๋ฐ์ดํ„ฐ X, x๋ฅผ ๋‹ค๋ฅธ ๊ณต๊ฐ„์œผ๋กœ ๋ณด๋‚ด์ฃผ๋Š” ๊ฐ€์ค‘์น˜ W์˜ ๊ณฑ์œผ๋กœ ํ‘œํ˜„ + b(y์ ˆํŽธ)์ด ๋•Œ ์ถœ๋ ฅ ๋ฒกํ„ฐ์˜ ์ฐจ์›์€ d -> p x to O๋กœ ์—ฐ๊ฒฐํ•  ๋•Œ P๊ฐœ์˜ ๋ชจ๋ธ.softmax ํ•จ์ˆ˜๋ชจ๋ธ์˜ ์ถœ๋ ฅ์„ ํ™•๋ฅ ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๊ฒŒ๋ถ„๋ฅ˜ ๋ฌธ์ œ ํ’€๋•Œ ๋ชจ๋ธ X ์†Œํ”„ํŠธ๋งฅ์Šค โ†’ ์˜ˆ์ธกsoftmax(o) = softmax(Wx +b)ํ•™์Šตํ• .. 2025. 1. 20.
[Math] Gradient Descent (๋งค์šด๋ฏธ๋ถ„๋ง›) ๋”๋ณด๊ธฐ๊ธฐ์กด ๋ถ€์บ  ๋•Œ ๋…ธ์…˜์— ๊ฐœ์ธ์ ์œผ๋กœ ์ •๋ฆฌํ•œ ๊ฒƒ์„ ๊ณต๋ถ€ํ•  ๊ฒธ ์ž‘์„ฑํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค.๊ฐœ์ธ์ ์œผ๋กœ ํ•ด์„ํ•ด์„œ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค. (ํ‹€๋ฆด ์ˆ˜ ์žˆ์Œ. ์ •์ •์š”์ฒญ ์š”๋งใ…‹)** ๊ฐ•์˜์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค **** ์ƒ์—…์  ์ด์šฉ์„ ๊ธˆ์ง€ํ•ฉ๋‹ˆ๋‹ค **Today's Keyword๋ฏธ๋ถ„, ๊ธฐ์šธ๊ธฐ, ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•, L2 norm, L2 norm ์ œ๊ณฑ, SGD np.linalg.pinv๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ํ˜• ๋ชจ๋ธ๋กœ ํ•ด์„ํ•ด์„œ ์„ ํ˜•ํšŒ๊ท€์‹์„ ์ฐพ์„ ์ˆ˜ ์žˆ์Œ. ์—ฌ๊ธฐ์„œ L2 ๋…ธ๋ฆ„์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒŒ ๋ชฉํ‘œ.L2 Norm||์ •๋‹ต - ๋‘ ๋ฒกํ„ฐ์˜ ์ฐจ์ด||ยฒ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” B๋ฅผ ์ฐพ์•„์•ผ ํ•จ.  ๋ชฉ์ ์‹์„ ์ตœ์†Œํ™”ํ•˜๋Š” B๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜L2 ๋…ธ๋ฆ„์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฒกํ„ฐ๋‚˜, L2 ๋…ธ๋ฆ„ ์ œ๊ณฑ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฒกํ„ฐ๋‚˜ ๊ฒฐ๊ณผ๋Š” ๊ฐ™์Œ. ๊ทธ๋ž˜์„œ ๊ณ„์‚ฐ ๊ฐ„๋‹จํ•˜๊ฒŒ ํ•˜๋ ค๋ฉด L2 ๋…ธ๋ฆ„ ์ œ๊ณฑ์„ ์“ฐ๋Š” ๊ฒŒ ๋” .. 2025. 1. 8.
[Math] Gradient Descent (์ฐฉํ•œ๋ฏธ๋ถ„๋ง›) ๋”๋ณด๊ธฐ๊ธฐ์กด ๋ถ€์บ  ๋•Œ ๋…ธ์…˜์— ๊ฐœ์ธ์ ์œผ๋กœ ์ •๋ฆฌํ•œ ๊ฒƒ์„ ๊ณต๋ถ€ํ•  ๊ฒธ ์ž‘์„ฑํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค.๊ฐœ์ธ์ ์œผ๋กœ ํ•ด์„ํ•ด์„œ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค. (ํ‹€๋ฆด ์ˆ˜ ์žˆ์Œ. ์ •์ •์š”์ฒญ ์š”๋งใ…‹)** ๊ฐ•์˜์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค **** ์ƒ์—…์  ์ด์šฉ์„ ๊ธˆ์ง€ํ•ฉ๋‹ˆ๋‹ค **  Today's Keyword๋ฏธ๋ถ„, ๊ธฐ์šธ๊ธฐ, ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•, ํŽธ๋ฏธ๋ถ„, gradient vector  ๋ฏธ๋ถ„ (Differentiation)๋ณ€์ˆ˜์˜ ์›€์ง์ž„์— ๋”ฐ๋ฅธ ํ•จ์ˆ˜๊ฐ’์˜ ๋ณ€ํ™” ์ธก์ •์ตœ์ ํ™”์—์„œ ๋งŽ์ด ์‚ฌ์šฉ ๋ฏธ๋ถ„ == ์ ‘์„ ์˜ ๊ธฐ์šธ๊ธฐํ•จ์ˆ˜์˜ ๋ชจ์–‘์ด ๋งค๋„๋Ÿฌ์›Œ์•ผ ํ•œ๋‹ค (์—ฐ์†)ํ•œ ์ ์—์„œ ์ ‘์„ ์˜ ๊ธฐ์šธ๊ธฐ๋ฅผ ์•Œ๋ฉด ์ฆ๊ฐ€ : ๋ฏธ๋ถ„ ๊ฐ’ ๋”ํ•˜๊ธฐ๊ฐ์†Œ : ๋ฏธ๋ถ„ ๊ฐ’ ๋นผ๊ธฐ ๋ฏธ๋ถ„๊ฐ’์ด ์Œ์ˆ˜(์ขŒ๋กœ ์ƒ์Šนํ•˜๋Š” ํ˜•ํƒœ) = x+f'(x) ๋ฏธ๋ถ„๊ฐ’์ด ์•™์ˆ˜(์šฐ๋กœ ์ƒ์Šนํ•˜๋Š” ํ˜•ํƒœ) = x+f'(x) > x ๋Š” ์˜ค๋ฅธ์ชฝ์œผ๋กœ ์ด๋™ํ•˜์—ฌ ํ•จ์ˆ˜๊ฐ’์ด ๊ฐ์†Œsympy.s.. 2024. 12. 16.
[Math] ํ–‰๋ ฌ์„ ์•Œ์•„๋ณด์ž ๋”๋ณด๊ธฐ๊ธฐ์กด ๋ถ€์บ  ๋•Œ ๋…ธ์…˜์— ๊ฐœ์ธ์ ์œผ๋กœ ์ •๋ฆฌํ•œ ๊ฒƒ์„ ๊ณต๋ถ€ํ•  ๊ฒธ ์ž‘์„ฑํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค.๊ฐœ์ธ์ ์œผ๋กœ ํ•ด์„ํ•ด์„œ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค. (ํ‹€๋ฆด ์ˆ˜ ์žˆ์Œ. ์ •์ •์š”์ฒญ ์š”๋งใ…‹)** ๊ฐ•์˜์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค **** ์ƒ์—…์  ์ด์šฉ์„ ๊ธˆ์ง€ํ•ฉ๋‹ˆ๋‹ค **Today's Keywordํ–‰๋ ฌ ๊ณฑ์…ˆ, ํ–‰๋ ฌ ๋‚ด์ , ํ–‰x์—ดy, ํ–‰๋ ฌ๋ฒกํ„ฐ๋ฅผ ์›์†Œ๋กœ ๊ฐ€์ง€๋Š” 2์ฐจ์› ๋ฐฐ์—ดํ–‰๋ฒกํ„ฐ(row), ์—ด๋ฒกํ„ฐ(column)๋ฒกํ„ฐ๊ฐ€ ๊ณต๊ฐ„์—์„œ ํ•œ ์ ์„ ์˜๋ฏธํ•œ๋‹ค๋ฉด, ํ–‰๋ ฌ์€ ์—ฌ๋Ÿฌ ์ ๋“ค์„ ๋‚˜ํƒ€๋ƒ„. ๊ฐ™์€ ๋ชจ์–‘์ด๋ฉด๋ง์…ˆ, ๋บ„์…ˆ์„ฑ๋ถ„๊ณฑ (๊ฐ ์ธ๋ฑ์Šค ์œ„์น˜๋ผ๋ฆฌ ๊ณฑํ•˜๊ธฐ) X * Y = (Xij Yij)์Šค์นผ๋ผ๊ณฑ aX = aXijvector ๊ณต๊ฐ„์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์—ฐ์‚ฐ์ž operator๋กœ ์ดํ•ด. ํ–‰๋ ฌ๊ณฑ์œผ๋กœ ๋ฒกํ„ฐ๋ฅผ ๋‹ค๋ฅธ ์ฐจ์› ๋ณด๋‚ด๋ฒ„๋ฆฌ๊ธฐ.ํŒจํ„ด์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๊ณ , ๋ฐ์ดํ„ฐ๋ฅผ ์••์ถ•ํ•  ์ˆ˜๋„ ์žˆ์Œ. ๋ชจ๋“  ์„ ํ˜•๋ณ€ํ™˜ linea.. 2024. 12. 2.
[Math] ๋ฒกํ„ฐ๋ฅผ ์•Œ์•„๋ณด์ž ๋”๋ณด๊ธฐ๊ธฐ์กด ๋ถ€์บ  ๋•Œ ๋…ธ์…˜์— ๊ฐœ์ธ์ ์œผ๋กœ ์ •๋ฆฌํ•œ ๊ฒƒ์„ ๊ณต๋ถ€ํ•  ๊ฒธ ์ž‘์„ฑํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค.๊ฐœ์ธ์ ์œผ๋กœ ํ•ด์„ํ•ด์„œ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค. (ํ‹€๋ฆด ์ˆ˜ ์žˆ์Œ. ์ •์ •์š”์ฒญ ์š”๋งใ…‹)** ๊ฐ•์˜์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค **** ์ƒ์—…์  ์ด์šฉ์„ ๊ธˆ์ง€ํ•ฉ๋‹ˆ๋‹ค **Today's Keyword๋ฒกํ„ฐ, Norm, L1-norm, L2-norm, ๋‚ด์ , ์ •์‚ฌ์˜๋ฒกํ„ฐ๊ณต๊ฐ„์—์„œ ํ•œ ์ . ์›์ ์œผ๋กœ๋ถ€ํ„ฐ ์ƒ๋Œ€์  ์œ„์น˜ ํ‘œํ˜„์Šค์นผ๋ผ ๊ณฑ ํ•˜๋ฉด ๊ธธ์ด๋งŒ ๋ณ€ํ•จ.์ˆซ์ž๋ฅผ ์›์†Œ๋กœ ๊ฐ€์ง€๋Š” ๋ฆฌ์ŠคํŠธ, ๋ฐฐ์—ด๊ฐ™์€ ๋ชจ์–‘์ด๋ฉด ์„ฑ๋ถ„๊ณฑ Hadamard product๋ฒกํ„ฐ์˜ ๋ง์…ˆ == ๋‹ค๋ฅธ ๋ฒกํ„ฐ๋กœ๋ถ€ํ„ฐ ์ƒ๋Œ€์  ์ด๋™Norm = ์›์ ์—์„œ ๋ถ€ํ„ฐ์˜ ๊ฑฐ๋ฆฌ๋…ธ๋ฆ„์˜ ์ข…๋ฅ˜๋”ฐ๋ผ ๋‹ค๋ฆ„ -> ๊ธฐํ•˜ํ•™์  ์„ฑ์งˆ๋„ ๋‹ฌ๋ผ์งL1 norm - ๋ณ€ํ™”๋Ÿ‰์˜ ์ ˆ๋Œ€๊ฐ’ ๋ชจ๋‘ ๋”ํ•ด !for Robust ํ•™์Šต, Lasso ํšŒ๊ท€L2 norm - ํ”ผํƒ€๊ณ ๋ผ์Šค ์ •๋ฆฌ.. 2024. 11. 22.
๋ฐ˜์‘ํ˜•

์ตœ๊ทผ๋Œ“๊ธ€

์ตœ๊ทผ๊ธ€

skin by ยฉ 2024 ttutta